Рабочая программа по математике 5 – 9 классы на основе ФГОС ООО

Уровень обучения – базовый.

Срок реализации рабочей программы - 5 лет.

Пояснительная записка

- 1. Программа составлена на основе Об образовании в Российской Федерации : Федеральный закон от 29 декабря 2012 г. № 273-Ф3.
- 2. Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2017/18 учебный год: приказ Министерства образования и науки Российской Федерации от 19 декабря 2012 г. № 1067, г.
- 3. Примерная основная образовательная программа образовательного учреждения : письмо департамента общего образования Министерства образования науки Российской Федерации от 01 ноября 2011 г. № 03-776.
- 4. Федеральный государственный образовательный стандарт основного общего образования: приказ Минобрнауки России от 17 декабря 2010 г. № 1897.
- 5. Примерной программы по учебным предметам «Стандарты второго поколения. Математика 5-9 класс» М.: Просвещение, 2011 г.
- 6. «Математика. Сборник рабочих программ 5 6 классы», М.Просвещение, 2011. Составитель Т. А. Бурмистрова.
- 7. «Алгебра. Программы общеобразовательных учреждений. 7 9 классы», М.Просвещение, 2010. Составитель Т. А. Бурмистрова.
- 8. «Геометрия. Программы общеобразовательных учреждений. 7 9 классы», М.Просвещение, 2010. Составитель Т. А. Бурмистрова.
- 9. Учебный плана МБОУ ООШ п.Советского

Математическое образование играет важную роль в практической жизни общества, которая связана с формированием способностей к умственному эксперименту.

Практическая полезность предмета обусловлена тем, что происходит формирование общих способов интеллектуальной деятельности, значимой для различных сфер человеческой деятельности.

Без базовой математической подготовки невозможно стать образованным человеком, так как овладение математическими знаниями и умениями необходимо для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни.

Обучение математике дает возможность формировать у учащихся качества мышления, необходимые для адаптации в современном информационном обществе.

Новизна данной программы определяется тем, что в основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям. Предлагаемый курс позволяет обеспечить формирование как *предметных* умений, так и *универсальных учебных действий* школьников, а также способствует достижению определённых во ФГОС

личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

При организации процесса обучения в рамках данной программы предполагается применением следующих педагогических технологий обучения: личностно-ориентированная (педагогика сотрудничества), позволяющую увидеть уровень обученности каждого ученика и своевременно подкорректировать её; технология уровневой дифференциации, позволяющая ребенку выбирать уровень сложности, информационно-коммуникационная технология, обеспечивающая формирование учебно-познавательной и информационной деятельности учащихся.

Сознательное овладение учащимися системой арифметических знаний и умений необходимо в повседневной жизни, для изучения смежных дисциплин и продолжения образования.

Общая характеристика учебного предмета.

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих *целей*:

в направлении личностного развития:

- формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
- развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
- формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
- воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
- формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
- развитие интереса к математическому творчеству и математических способностей;

в метапредметном направлении:

- развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
- формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

в предметном направлении:

• овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни; создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная —с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено принципов устройства и использования современной техники, разнообразной интерпретация социальной, экономической, восприятие политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают

умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

Место учебного предмета в Федеральном базисном учебном (образовательном) плане.

Базисный учебный (образовательный) план на изучение математики в основной школе отводит 5 учебных часов в неделю в течение каждого года обучения, всего 870 уроков. Из школьного компонента образовательного учреждения может быть выделено 1 час в неделю на изучение математики в 5-9 классах, таким образом, количество часов в неделю тогда будет увеличено до 6. В 7-9 классах: алгебра - 3 часа, геометрия – 3 часа. Тогда получаем всего 974 часа.

Согласно Базисного учебного (образовательного) плана в 5—6 классах изучается предмет «Математика» (интегрированный предмет), в 7—9 классах - «Математика» (включающий разделы «Алгебра» и «Геометрия»)

Предмет «Математика» в 5—6 классах включает арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии.

Предмет «Математика» в 7-9 классах включает в себя некоторые вопросы арифметики, развивающие числовую линию 5-6 классов, алгебраический материал, элементарные функции, элементы вероятностно-статистической линии, а также геометрический материал, традиционно изучаются, евклидова геометрия, элементы векторной алгебры, геометрические преобразования.

Раздел «Алгебра» включает некоторые вопросы арифметики, развивающие числовую линию 5—6 классов, собственно алгебраический материал, элементарные функции.

В рамках учебного раздела «Геометрия» традиционно изучаются, евклидова геометрия, элементы векторной алгебры, геометрические преобразования.

Распределение учебного времени между этими предметами представлено в таблице.

Года обучения	Кол-во часов в	Кол-во учебных	Всего часов за
	неделю	недель	учебный год
5 класс	5	34	170
6 класс	5	34	170
7 класс	6	34	204
8 класс	6	34	204
9 класс	6	34	204
			952 часа за курс

Классы	Предметы	Количество часов на
	математического	ступени основного
	цикла	образования
5-6	Математика	340
7-9	Алгебра	408
	Геометрия	204
Всего	·	952

В силу новизны для школы вероятностно-статистического материала и отсутствия методических традиций возможна вариативность при его структурировании. Начало изучения соответствующего материала может быть отнесено и к 5—6, и к 7—9 классам. Кроме того, его изложение возможно как в рамках курса алгебры, так и в виде отдельного модуля. Последний вариант может быть реализован только при условии увеличения числа часов на математику по сравнению с инвариантной частью учебного (образовательного) плана.

Рабочая программа ориентирована на использование учебно - методического комплекса:

- 1. *Математика 5 класс*: учебник для общеобразовательных учреждений. /С.М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин Изд. 11-е. М.: Просвещение, 2012.
- 2. *Математика 6 класс*: учебник для общеобразовательных учреждений. /С.М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин Изд. 11-е. М.: Просвещение, 2012.
- 3. *Математика 5 класс*: дидактические материалы по математике/ М. К. .Потапов , А В. Шевкин М.: Просвещение, 2015.
- 4. *Математика 6 класс*: дидактические материалы по математике/ М. К. .Потапов , А В. Шевкин М.: Просвещение, 2015.
- 5. *Математика 5 класс*: рабочая тетрадь по математике в 2-х частях: пособие для учащихся общеобразовательных учреждений/ М .К. Потапов , А. В. Шевкин М.: Просвещение, 2012.
- 6. *Математика 6 класс*: рабочая тетрадь по математике в 2-х частях: пособие для учащихся общеобразовательных учреждений/ М .К. Потапов , А. В. Шевкин М.: Просвещение, 2012.
- 7. *Математика 5 класс*: тематические тесты/ П. В. Чулков, Е. Ф. Шершнев, О. Ф. Зарапина М.: Просвещение, 2011.
- 8. *Математика 6 класс*: тематические тесты/ П. В. Чулков, Е. Ф. Шершнев, О .Ф Зарапина М.: Просвещение, 2011.
- 9. *Математика 5-6 класс*: книга для учителя/ М. К. Потапов , А. В .Шевкин М.: Просвещение, 2011.
- 10. Задачи на смекалку 5-6 классы: И. Ф. Шарыгин, А.В. Шевкин пособие для учащихся обще образовательных учреждений/- М.: Просвещение, 2013
- 11.Учебник: Алгебра 7. / С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин / М.: Просвещение, 2009г.
- 12. Учебник: Алгебра 8. / С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин / М.: Просвещение, 2009г.
- 13. Учебник: Алгебра 9. / С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин / М.: Просвещение, 2009г.
- 14. Дидактические материалы по алгебре. 7 класс. / М.К.Потапов, А.В.Шевкин / М: Просвещение, 2014г
- 15.Дидактические материалы по алгебре.8 класс. / М.К.Потапов, А.В.Шевкин / М: Просвещение, 2014г

- 16. Дидактические материалы по алгебре. 9 класс. / М.К.Потапов, А.В.Шевкин / М: Просвещение, 2002г
- 17. Лысенко Ф.Ф. Алгебра. 9 класс. Подготовка к государственной итоговой аттестации 2010: учебно-методическое пособие Ростов на Дону: Легион M,2014.
- 18. Лысенко Ф.Ф. Алгебра. 9 класс. Тематические тесты для подготовки к государственной итоговой аттестации 2010: учебно-методическое пособие Ростов на Дону: Легион М,2015.
- 19. Математические диктанты 7-9 классы / Конте А.С./Волгоград, 2014
- 20. Геометрия, 7-9 класс: учебник для общеобразовательных учреждений./Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина Изд. М.: Просвещение
- 21. Тесты по геометрии. 7 класс. К учебнику Л. С. Атанасян « Геометрия. 7-9 классы». ФГОС 2015г.
- 22. Тесты по геометрии. 8 класс. К учебнику Л. С. Атанасян « Геометрия. 7-9 классы». ФГОС 2015 г.
- 23. Тесты по геометрии. 9 класс. К учебнику Л. С. Атанасян « Геометрия. 7-9 классы». ФГОС 2015г.
- 24. Геометрия. 7 класс. Рабочая тетрадь к учебнику Атанасяна Л. С. « Геометрия. 7-9 классы». ФГОС.
- 25. Геометрия. 8 класс. Рабочая тетрадь к учебнику Атанасяна Л. С. « Геометрия. 7-9 классы». ФГОС.
- 26. Геометрия. 9 класс. Рабочая тетрадь к учебнику Атанасяна Л. С. « Геометрия. 7-9 классы». ФГОС.

Требования к уровню подготовки учащихся

Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:

1) в личностном направлении:

- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контр. примеры;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
- креативность мышления, инициатива, находчивость, активность при решении математических задач;
- умение контролировать процесс и результат учебной математической деятельности;

• способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

2) в метапредметном направлении:

- первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;
- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

3) в предметном направлении:

- овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
- умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;
- умение проводить классификации, логические обоснования, доказательства математических утверждений;
- умение распознавать виды математических утверждений (аксиомы, определения, теоремы и др.), прямые и обратные теоремы;
- развитие представлений о числе и числовых системах от натуральных до действительных чисел, овладение навыками устных, письменных, инструментальных вычислений;

- алгебры, овладение символьным языком приемами выполнения преобразований тождественных рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств, умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;
- овладение системой функциональных понятий, функциональным языком и символикой, умение на основе функционально-графических представлений описывать и анализировать реальные зависимости;
- овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;
- овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
- усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
- умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;
- умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

Личностные, метапредметные и предметные результаты освоения учебного предмета «Математика»

Взаимосвязь результатов освоения предмета «Математика» можно системно представить в виде схемы. При этом обозначение ЛР указывает, что продвижение учащихся к новым образовательным результатам происходит в соответствии с линиями развития средствами предмета.

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).

<u>Регулятивные УУД</u>: 5–9 классы

Личностными результатами изучения предмета «Математика» (в виде следующих учебных курсов: 5–6 класс – «Математика», 7–9 класс – «Алгебра» и «Геометрия») являются следующие качества:

- независимость и критичность мышления;
- воля и настойчивость в достижении цели.

Средством достижения этих результатов является:

- система заданий учебников;
- представленная в учебниках в явном виде организация материала по принципу минимакса;
- использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология проблемного диалога, технология продуктивного чтения, технология оценивания.

5-6-й классы

- самостоятельно *обнаруживать* и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;
- выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
- составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
- работая по плану, *сверять* свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе **и корректировать план**);
- в диалоге с учителем *совершенствовать* самостоятельно выработанные критерии оценки.

7-9-й классы

- самостоятельно *обнаруживать* и *формулировать* проблему в классной и индивидуальной учебной деятельности;
- выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;
- *составлять* (индивидуально или в группе) план решения проблемы (выполнения проекта);
- *подбирать* к каждой проблеме (задаче) адекватную ей теоретическую модель;

- работая по предложенному или самостоятельно составленному плану, *использовать* наряду с основными средствами и дополнительные средства (справочная литература, сложные приборы, компьютер);
- *планировать* свою индивидуальную образовательную траекторию;
- *работать* по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);
- свободно *пользоваться* выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;
- в ходе представления проекта *давать оценку* его результатам;
- самостоятельно *осознавать* причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
- *уметь оценить* степень успешности своей индивидуальной образовательной деятельности;
- давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).

Средством формирования регулятивных УУД служат технология проблемного диалога на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

5-9-й классы

- анализировать, сравнивать, классифицировать и обобщать факты и явления;
- *осуществлять* сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);
- *строить* логически обоснованное рассуждение, включающее установление причинно-следственных связей;
- создавать математические модели;

- составлять тезисы, различные виды планов (простых, сложных и т.п.).
 Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);
- *вычитывать* все уровни текстовой информации.
- *уметь определять* возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.
- понимая позицию другого человека, *различать* в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.
- самому *создавать* источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;
- *уметь использовать* компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника, позволяющие продвигаться по всем шести линиям развития. (ЛР)

- 1-я ЛР Использование математических знаний для решения различных математических задач и оценки полученных результатов.
- 2-я ЛР Совокупность умений по использованию доказательной математической речи.
- 3-я ЛР Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.
- 4-я ЛР Умения использовать математические средства для изучения и описания реальных процессов и явлений.
- 5-я ЛР Независимость и критичность мышления.
- 6-я ЛР Воля и настойчивость в достижении цели.

Коммуникативные УУД:

5–9-й классы

- самостоятельно *организовывать* учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
- отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
- в дискуссии уметь выдвинуть контраргументы;

- учиться *критично относиться* к своему мнению, с достоинством *признавать* ошибочность своего мнения (если оно таково) и корректировать его;
- понимать позицию другого человека. *Различать* в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
- *уметь* взглянуть на ситуацию с иной позиции и *договариваться* с людьми иных позиций.

Средством формирования коммуникативных УУД служат технология проблемного диалога (побуждающий и подводящий диалог) и организация работы в малых группах, также использование на уроках элементов технологии продуктивного чтения.

Предметными результатами изучения предмета «Математика» являются следующие умения.

5-й класс

Использовать при решении математических задач, их обосновании и проверке найденного решения знание:

- названий и последовательности чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);
- как образуется каждая следующая счётная единица;
- названия и последовательность разрядов в записи числа;
- названия и последовательность первых трёх классов;
- сколько разрядов содержится в каждом классе;
- соотношение между разрядами;
- сколько единиц каждого класса содержится в записи числа;
- как устроена позиционная десятичная система счисления;
- единицы измерения величин (длина, масса, время, площадь), соотношения между ними;
- функциональной связи между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа).

Выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях; выполнять проверку правильности вычислений;

- выполнять умножение и деление с 1 000;
- *вычислять* значения числовых выражений, содержащих 3–4 действия со скобками и без них;
- раскладывать натуральное число на простые множители;

- *находить* наибольший общий делитель и наименьшее общее кратное нескольких чисел;
- решать простые и составные текстовые задачи;
- *выписывать* множество всевозможных результатов (исходов) простейших случайных экспериментов;
- находить вероятности простейших случайных событий;
- *решать* удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;
- *решать* удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;
- *читать* информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;
- строить простейшие линейные, столбчатые и круговые диаграммы;
- *находить* решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- *создавать* продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

- десятичных дробях и правилах действий с ними;
- отношениях и пропорциях; основном свойстве пропорции;
- прямой и обратной пропорциональных зависимостях и их свойствах;
- процентах;
- целых и дробных отрицательных числах; рациональных числах;
- правиле сравнения рациональных чисел;
- правилах выполнения операций над рациональными числами; свойствах операций.
- Сравнивать десятичные дроби;
 - выполнять операции над десятичными дробями;
 - преобразовывать десятичную дробь в обыкновенную и наоборот;
 - округлять целые числа и десятичные дроби;
 - находить приближённые значения величин с недостатком и избытком;
 - выполнять приближённые вычисления и оценку числового выражения;
 - делить число в данном отношении;
 - находить неизвестный член пропорции;
 - *находить* данное количество процентов от числа и число по известному количеству процентов от него;
 - находить, сколько процентов одно число составляет от другого;

- увеличивать и уменьшать число на данное количество процентов;
- решать текстовые задачи на отношения, пропорции и проценты;
- сравнивать два рациональных числа;
- *выполнять* операции над рациональными числами, использовать свойства операций для упрощения вычислений;
- решать комбинаторные задачи с помощью правила умножения;
- находить вероятности простейших случайных событий;
- решать простейшие задачи на осевую и центральную симметрию;
- *решать* простейшие задачи на разрезание и составление геометрических фигур;
- *находить* решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- *создавать* продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

Алгебра

- натуральных, целых, рациональных, иррациональных, действительных числах;
- степени с натуральными показателями и их свойствах;
- одночленах и правилах действий с ними;
- многочленах и правилах действий с ними;
- формулах сокращённого умножения;
- тождествах; методах доказательства тождеств;
- линейных уравнениях с одной неизвестной и методах их решения;
- системах двух линейных уравнений с двумя неизвестными и методах их решения.
- Выполнять действия с одночленами и многочленами;
- узнавать в выражениях формулы сокращённого умножения и применять их;
- раскладывать многочлены на множители;
- выполнять тождественные преобразования целых алгебраических выражений;
- доказывать простейшие тождества;
- находить число сочетаний и число размещений;
- решать линейные уравнения с одной неизвестной;
- *решать* системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;
- решать текстовые задачи с помощью линейных уравнений и систем;
- *находить* решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- *создавать* продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

Геометрия

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

- основных геометрических понятиях: точка, прямая, плоскость, луч, отрезок, ломаная, многоугольник;
- определении угла, биссектрисы угла, смежных и вертикальных углов;
- свойствах смежных и вертикальных углов;
- определении равенства геометрических фигур; признаках равенства треугольников;
- геометрических местах точек; биссектрисе угла и серединном перпендикуляре к отрезку как геометрических местах точек;
- определении параллельных прямых; признаках и свойствах параллельных прямых;
- аксиоме параллельности и её краткой истории;
- формуле суммы углов треугольника;
- определении и свойствах средней линии треугольника;
- теореме Фалеса.
- Применять свойства смежных и вертикальных углов при решении задач;
- *находить* в конкретных ситуациях равные треугольники и доказывать их равенство;
- *устанавливать* параллельность прямых и применять свойства параллельных прямых;
- применять теорему о сумме углов треугольника;
- *использовать* теорему о средней линии треугольника и теорему Фалеса при решении задач;
- *находить* решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- *создавать* продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

8-й класс.

Алгебра

- алгебраической дроби; основном свойстве дроби;
- правилах действий с алгебраическими дробями;
- степенях с целыми показателями и их свойствах;
- стандартном виде числа;

- функциях y = kx + b, $y = x^2$, $y = \frac{k}{x}$, их свойствах и графиках;
- понятии квадратного корня и арифметического квадратного корня;
- свойствах арифметических квадратных корней;
- функции $y = \sqrt{x}$, её свойствах и графике;
- формуле для корней квадратного уравнения;
- теореме Виета для приведённого и общего квадратного уравнения;
- основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;
- методе решения дробных рациональных уравнений;
- основных методах решения систем рациональных уравнений.
- Сокращать алгебраические дроби;
- выполнять арифметические действия с алгебраическими дробями;
- использовать свойства степеней с целыми показателями при решении задач;
- записывать числа в стандартном виде;
- выполнять тождественные преобразования рациональных выражений;
- *строить* графики функций y = kx + b, $y = x^2$, $y = \frac{k}{x}$ и использовать их свойства при решении задач;
- вычислять арифметические квадратные корни;
- применять свойства арифметических квадратных корней при решении задач;
- *строить* график функции $y = \sqrt{x}$ и использовать его свойства при решении задач;
- решать квадратные уравнения;
- применять теорему Виета при решении задач;
- *решать* целые рациональные уравнения методом разложения на множители и методом замены неизвестной;
- решать дробные уравнения;
- решать системы рациональных уравнений;
- *решать* текстовые задачи с помощью квадратных и рациональных уравнений и их систем;
- *находить* решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- *создавать* продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

Геометрия

- определении параллелограмма, ромба, прямоугольника, квадрата; их свойствах и признаках;
- определении трапеции; элементах трапеции; теореме о средней линии трапеции;
- определении окружности, круга и их элементов;
- теореме об измерении углов, связанных с окружностью;
- определении и свойствах касательных к окружности; теореме о равенстве двух касательных, проведённых из одной точки;
- определении вписанной и описанной окружностей, их свойствах;
- определении тригонометрические функции острого угла, основных соотношений между ними;
- приёмах решения прямоугольных треугольников;
- тригонометрических функциях углов от 0 до 180°;
- теореме косинусов и теореме синусов;
- приёмах решения произвольных треугольников;
- формулах для площади треугольника, параллелограмма, трапеции;
- теореме Пифагора.
- *Применять* признаки и свойства параллелограмма, ромба, прямоугольника, квадрата при решении задач;
- решать простейшие задачи на трапецию;
- *находить* градусную меру углов, связанных с окружностью; устанавливать их равенство;
- применять свойства касательных к окружности при решении задач;
- решать задачи на вписанную и описанную окружность;
- *выполнять* основные геометрические построения с помощью циркуля и линейки;
- *находить* значения тригонометрических функций острого угла через стороны прямоугольного треугольника;
- *применять* соотношения между тригонометрическими функциями при решении задач; в частности, по значению одной из функций находить значения всех остальных;
- решать прямоугольные треугольники;
- *сводить* работу с тригонометрическими функциями углов от 0 до 180° к случаю острых углов;
- применять теорему косинусов и теорему синусов при решении задач;
- решать произвольные треугольники;
- находить площади треугольников, параллелограммов, трапеций;
- применять теорему Пифагора при решении задач;
- находить простейшие геометрические вероятности;
- *находить* решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- *создавать* продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

Алгебра

- свойствах числовых неравенств;
- методах решения линейных неравенств;
- свойствах квадратичной функции;
- методах решения квадратных неравенств;
- методе интервалов для решения рациональных неравенств;
- методах решения систем неравенств;
- свойствах и графике функции $y = x^n$ при натуральном n;
- определении и свойствах корней степени *n*;
- степенях с рациональными показателями и их свойствах;
- определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;
- определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;
- формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.
- Использовать свойства числовых неравенств для преобразования неравенств;
- доказывать простейшие неравенства;
- решать линейные неравенства;
- *строить* график квадратичной функции и использовать его при решении задач;
- решать квадратные неравенства;
- решать рациональные неравенства методом интервалов;
- решать системы неравенств;
- *строить* график функции $y = x^n$ при натуральном n и использовать его при решении задач;
- *находить* корни степени *n*;
- *использовать* свойства корней степени *п* при тождественных преобразованиях;
- находить значения степеней с рациональными показателями;
- решать основные задачи на арифметическую и геометрическую прогрессии;
- *находить* сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;
- *находить* решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- *создавать* продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

Геометрия

- признаках подобия треугольников;
- теореме о пропорциональных отрезках;
- свойстве биссектрисы треугольника;
- пропорциональных отрезках в прямоугольном треугольнике;
- пропорциональных отрезках в круге;
- теореме об отношении площадей подобных многоугольников;
- свойствах правильных многоугольников; связи между стороной правильного многоугольника и радиусами вписанного и описанного кругов;
- определении длины окружности и формуле для её вычисления;
- формуле площади правильного многоугольника;
- определении площади круга и формуле для её вычисления; формуле для вычисления площадей частей круга;
- правиле нахождения суммы и разности векторов, произведения вектора на скаляр; свойства этих операций;
- определении координат вектора и методах их нахождения;
- правиле выполнений операций над векторами в координатной форме;
- определении скалярного произведения векторов и формуле для его нахождения;
- связи между координатами векторов и координатами точек;
- векторным и координатным методах решения геометрических задач.
- формулах объёма основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса.
- Применять признаки подобия треугольников при решении задач;
- решать простейшие задачи на пропорциональные отрезки;
- решать простейшие задачи на правильные многоугольники;
- находить длину окружности, площадь круга и его частей;
- выполнять операции над векторами в геометрической и координатной форме;
- *находить* скалярное произведение векторов и применять его для нахождения различных геометрических величин;
- решать геометрические задачи векторным и координатным методом;
- *применять* геометрические преобразования плоскости при решении геометрических задач;
- *находить* объёмы основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса;
- *находить* решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- *создавать* продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

5. Содержание математического образования

Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. Оно в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения.

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.

Содержание раздела «Алгебра» направлено на формирование у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Содержание раздела **«Функции»** нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности - умений воспринимать и критически анализировать информацию,

представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.

Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение, как в различных математических дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется в ходе рассмотрения различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

Ценностные ориентиры содержания учебного предмета

Математическое образование играет важную роль, как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная — с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном достаточно сложных, необходимых для развития научных опыте, технологических идей. Без конкретных математических знаний затруднено устройства и использования современной техники, принципов понимание разнообразной социальной, восприятие интерпретация экономической, малоэффективна политической информации, повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их,

владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В после школьной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

Содержание учебного предмета

АРИФМЕТИКА (240 ч)

Натуральные числа. Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.

Степень с натуральным показателем.

Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. Решение текстовых задач арифметическими способами.

Делители и кратные. Свойству и признаки делимости. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.

Дроби. Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

Проценты; нахождение процентов от величины и величины по её процентам. Отношение; выражение отношения в процентах. Пропорция; основное свойство пропорции.

Решение текстовых задач арифметическими способами.

Рациональные числа. Положительные и отрицательные числа, модуль числа. Множество целых чисел. Множество рациональных чисел; рациональное число как отношение m/n, где m — целое число, а n — натуральное. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий. Степень с целым показателем.

Действительные числа. Квадратный корень из числа. Корень третьей степени.

Понятие об иррациональном числе. Иррациональность числа $\sqrt{2}$ и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел.

Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки.

Измерения, приближения, оценки. Размеры объектом окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя—степени десяти в записи числа.

Приближённое значение величины, точность приближения. Округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.

АЛГЕБРА (200 ч)

Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и её свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трёхчлен; разложение квадратного трёхчлена на множители.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и её свойства.

Рациональные выражения и их преобразования. Доказательство тождеств.

Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям.

Уравнения. Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвёртой степеней. Решение дробно-рациональных уравнений.

Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Примеры решения систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент пря- мой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства. Числовые неравенства и их свойства. Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.

ФУНКЦИИ (65 ч)

Функции. Примеры зависимостей; прямая пропорциональность, обратная пропорциональность. Задание зависимостей формулами; вычисления по формулам. Зависимости между величинами. Примеры графиков зависимостей, отражающих реальные процессы.

Числовые функции. Понятие функции, область применения и область значения функции. Способы задания функции. График функции. Свойства функции, их отражение на графике.

Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, её график и свойства. Квадратичная функция, её график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций

$$y = \sqrt[3]{x}, \ y = |x|.$$

Числовые последовательности. Понятие числовой последовательности. Задание последовательности рекуррентной формулой И формулой члена. л-го Арифметическая И геометрическая профессии. Формулы п-го члена арифметической и геометрической прогрессий, суммы первых п-х членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

ВЕРОЯТНОСТЬ И СТАТИСТИКА (50 ч)

Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании.

Случайные события и вероятность. Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.

Комбинаторика. Решение комбинаторных задач перебо**ром** вариантов. Комбинаторное правило умножения. Перестановки и факториал.

ГЕОМЕТРИЯ (255 ч)

Наглядная геометрия. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырёхугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Изображение геометрических фигур и их конфигураций.

Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины.

Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира. Биссектриса угла.

Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближённое измерение площади фигур на клетчатой бумаге. Равновеликие фигуры. Разрезание и составление геометрических фигур.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры развёрток многогранников, цилиндра и конуса. Изготовление моделей пространственных фигур.

Понятие объёма; единицы объёма. Объём прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные И равносторонние треугольники; свойства признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. треугольников. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0

до 180°, • приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треугольника.

Четырёхугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Центральный угол, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные окружности правильного многоугольника.

Геометрические преобразования. Понятие о равенстве фигур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур, гомотетии.

Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.

Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Периметр многоугольника.

Длина окружности, число я, длина дуги окружности.

Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные ПИ равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.

Решение задач на вычисление и доказательство с использованием изученных формул.

Координаты. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости, уравнение окружности.

Векторы. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.

ЛОГИКА И МНОЖЕСТВА (10 ч)

Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера— Венна.

Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Понятие о равносильности, следовании, употребление логических связок если... то, в том и только в том случае, логические связки и, или.

Математика в историческом развитии. История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магнии кий. Л. Эйлер.

Зарождение алгебры в недрах арифметики. Ал-Хорезми Рождение буквенной символики. П. Ферма. Ф. Виет. Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степе ни, большей четырёх. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э. Галуа.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма и Б. Паскаль. Я. Бернулли. А.Н. Колмогоров

От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построения с помощью циркуля и линейки. Построение правильных многоугольников. Трисекция угла. Квадратур» круга. Удвоение куба. История числа п. Золотое сечение. «Начала» Евклида. Л. Эйлер. Н.И. Лобачевский. История пятою постулата. Софизм, парадоксы.

Резерв времени 132 ч

Тематическое планирование

с определением основных видов учебной деятельности и метапредметных умений и навыков

МАТЕМАТИКА

5—6 классы *(340ч)*

Основное содержание по темам	Характеристика основных видов деятельности ученика (на уровне учебных действий)	Метапредметные умения и навыки			
1	2	3			
1. Натуральные числа (50 ч)					
Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий. Понятие о степени с натуральным показателем. Квадрат и куб числа. Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. Решение текстовых задач арифметическими способами. Делители и кратные. Наибольший общий делитель; наименьшее общее кратное. Свойства делимости. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком	Описывать свойства натурального ряда. Читать и записывать натуральные числа, сравнивать и упорядочивать их. Выполнять вычисления с натуральными числами; вычислять значения степеней. Формулировать свойства арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения. Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию. Формулировать определения делителя и кратного, простого числа и составного числа, свойства и признаки делимости. Доказывать и опровергать с помощью контрпримеров утверждения о делимости чисел. Классифицировать натуральные числа (четные и нечетные, по остаткам от деления на 3 и т. п.). Исследовать простейшие числовые закономерности, проводить числовые закономерности, проводить числовые эксперименты (в том числе с использованием калькулятора, компьютера)	Уметь видеть математическую задачу в контексте проблемной ситуации в окружающей жизни. Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.			

2. Дроби (120 ч)

Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Отношение. Пропорция; основное свойство пропорции.

Проценты; нахождение процентов от величины и величины по ее процентам; выражение отношения в процентах.

Решение текстовых задач арифметическими способами

Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби.

Формулировать, записывать с помощью букв основное свойство обыкновенной дроби, правила действий с обыкновенными дробями.

Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их. **Выполнять** вычисления с обыкновенными дробями.

Читать и записывать десятичные дроби. **Представ**лять обыкновенные дроби в виде десятичных и десятичные в виде обыкновенных; **находить** десятичные приближения обыкновенных дробей.

Сравнивать и **упорядочивать** десятичные дроби. Выполнять вычисления с десятичными дробями.

Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях.

Выполнять прикидку и оценку в ходе вычислений. **Объяснять,** что такое процент. **Представлять** проценты в виде дробей и дроби в виде процентов.

Осуществлять поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретировать их. **Приводить** примеры использования отношений на практике.

Решать задачи на проценты и дроби (в том числе задачи из реальной практики), используя при необходимости калькулятор; использовать понятия *отношения* и *пропорции* при решении задач.

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.

Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые эксперименты (в том числе с использованием калькулятора, компьютера)

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Умение

самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

3. Рациональные числа (40 ч

Положительные и отрицательные числа, модуль числа. Изображение чисел точками координатной прямой; геометрическая интерпретация модуля числа.

Множество целых чисел. Множество рациональных чисел. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий

Приводить примеры использования в окружающем мире положительных и отрицательных чисел (температура, выигрыш — проигрыш, выше — ниже уровня моря и т. п.).

Изображать точками координатной прямой положительные и отрицательные рациональные числа.

Характеризовать множество целых чисел, множество рациональных чисел.

Формулировать и записывать с помощью букв свойства действий с рациональными числами, применять для преобразования числовых выражений.

Сравнивать и **упорядочивать** рациональные числа, **выполнять** вычисления с рациональными числами

Понимать сущности апгоритмических предписаний умение действовать в соответствии с предложенным алгоритмом. Умение понимать и использовать математические средства наглядности фики, диаграммы, таблицы, схемы и для др.)

люстрации, интерпретации, аргументации;

4. Измерения, приближения, оценки. Зависимости между величинами

 $(20 \ u)$

Примеры зависимостей между величинами скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость и др. Представление зависимостей в виде формул. Вычисления по формулам. Решение текстовых задач арифметическими способами

Выражать одни единицы измерения величины в других единицах (метры в километрах, минуты в часах и т. п.). Округлять натуральные числа и десятичные дроби. Выполнять прикидку и оценку в ходе вычислений.

Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам.

Использовать знания о зависимостях между величинами (скорость, время, расстояние; работа, производительность, время и т. п.) при решении текстовых задач

Уметь видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни

5. Элементы алгебры (25 ч)

Использование букв для обозначения чисел, для записи свойств арифметических действий.

Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения.

Уравнение, корень уравнения. Нахождение неизвестных компонентов арифметических действий.

Декартовы координаты на плоскости. Построение точки по ее координатам, определение координат точки на плоскости **Читать** и **записывать** буквенные выражения, составлять буквенные выражения по условиям задач.

Вычислять числовое значение буквенного выражения при заданных значениях букв.

Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.

Строить на координатной плоскости точки и фигуры по заданным координатам; **определять** координаты точек

Уметь видеть математическую задачу в контексте проблемной ситуации в окружающей жизни. Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

6. Описательная статистика. Вероятность. Комбинаторика. Множества (20 ч)

Представление данных в виде таблиц, диаграмм.

Понятие о случайном опыте и событии. Достоверное и невозможное события. Сравнение шансов.

Решение комбинаторных задач перебором вариантов

Извлекать информацию из таблиц и диаграмм, **выполнять** вычисления по табличным данным, **сравнивать** величины, **находить** наибольшие и наименьшие значения и др.

Выполнять сбор информации в несложных случаях, представлять информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных программ.

Приводить примеры случайных событий, достоверных и невозможных событий. Сравнивать шансы наступления событий; строить речевые конструкции с использованием словосочетаний более вероятно, маловероятно и др.

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, **выделять** комбинации, отвечающие заданным условиям

Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение конкретных множеств. Приводить примеры несложных классификаций из различных областей жизни.

Иллюстрировать теоретикомножественные понятия с помощью кругов Эйлера Уметь видеть математическую задачу в контексте проблемной ситуации в окружающей жизни.
Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки

7. Наглядная геометрия (45 ч)

Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, правильный многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников.

Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности.

Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины.

Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Понятие плошали фигуры: ели-

ницы измерения площади. Площадь прямоугольника и площадь квадрата. Равновеликие фигуры. Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, Изображение цилиндр. пространственных фигур. Примеры сечений. Многогранники, правильные многогранники. Примеры многогранников, разверток

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда и объем куба. Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур

цилиндра и конуса.

Распознавать на чертежах, рисунках и моделях геометрические фигуры, конфигурации фигур (плоские и пространственные). **Приводить** примеры аналогов геометрических фигур в окружающем мире.

Изображать геометрические фигуры и их конфигурации от руки и с использованием чертежных инструментов. Изображать геометрические фигуры на клетчатой бумаге. Измерять с помощью инструментов и сравнивать длины отрезков и величины углов. Строить отрезки заданной длины с помощью линейки и циркуля и углы заданной величины с помощью транспортира. Выражать одни единицы измерения длин через другие.

Вычислять площади квадратов и прямоугольников, используя формулы площади квадрата и площади прямоугольника.

Выражать одни единицы измерения площади через другие. **Изготавливать** пространственные фигуры из разверток; распознавать развертки куба, параллелепипеда, пирамиды, цилиндра *и* конуса. *Рассматривать* простейшие сечения пространственных фигур, получаемые путем предметного или компьютерного моделирования, **определять** их вид.

Вычислять объемы куба и прямоугольного параллелепипеда, используя формулы объема куба и объема прямоугольного параллелепипеда. **Выражать** одни единицы измерения объема через другие.

Исследовать и **описывать** свойства геометрических фигур (плоских и пространственных), используя эксперимент, наблюдение, измерение. **Моделировать** геометрические объекты, используя бумагу, пластилин, проволоку и др. **Использовать** компьютерное моделирование и эксперимент для изучения свойств геометрических объектов.

Находить в окружающем мире плоские и пространственные симметричные фигуры.

Решать задачи на нахождение длин отрезков, периметров многоугольников, градусной меры углов, площадей квадратов и прямоугольников, объемов кубов и прямоугольных параллелепипедов, куба. Выделять в условии задачи данные, необходимые для ее решения, строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи.

Изображать равные фигуры, симметричные фигуры

Строить логическую цепочку pacсуждений, сопоставлять полученный результат с условием задачи. Умение применять индуктивные И делуктивные способы рассуждений, видеть различные стратегии решения задач Умение планировать осуществлять

планировать и осуществлять надеятельность, направленную на решение задач исследовательского характера;

Резерв времени - 20 ч

Тематическое планирование

Математика 7-9 классы (408 ч)

Раздел «Алгебра»

Основное содержание по	Характеристика основных	Метапредметные умения и				
темам	видов деятельности ученика	навыки				
	(на уровне учебных действий)					
1	2	3				
	1. Действительные числа (15 ч)					
D		**				
Расширение множества натуральных	Описывать множество целых чисел,	Умение понимать и использовать				
чисел до множества целых,	множество рациональных чисел,	математические средства наглядности				
множества целых чисел до множе-	соотношение между этими множест-	(графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпрета-				
ства рациональных. Рациональное число как отношение m/n , где m	вами. Сравнивать и упорядочивать	и др.) для иллюстрации, интерпретации, аргументации.				
- целое число, а n — натуральное	рациональные числа, выполнять	ции, аргументации. Умение находить в различных				
- целос число, а n — натуральное число.	вычисления с рациональными	источниках информацию,				
Степень с целым показателем.	числами, вычислять значения	необходимую для решения мате-				
Квадратный корень из числа. Корень	степеней с целым показателем.	матических проблем, представлять ее				
третьей степени.	Формулировать определение	в понятной форме, принимать				
Понятие об иррациональном числе.	квадратного корня из числа. Ис-	решение в условиях неполной и				
Иррациональность числа√2 и	пользовать график функции $y = x^2$	избыточной, точной и вероятностной				
несоизмеримость стороны и	для нахождения квадратных корней.	информации.				
диагонали квадрата. Десятичные	Вычислять точные и приближенные					
приближения иррациональных	значения корней, используя при					
чисел.	необходимости калькулятор;					
Множество действительных чисел;	проводить оценку квадратных					
представление действительных	корней.					
чисел в виде бесконечных десятич-	Формулировать определение корня					
ных дробей. Сравнение действи-	третьей степени; находить значения					
тельных чисел.	кубических корней, при необходимо-					
Взаимно однозначное соответствие между действительными числами и	сти используя, калькулятор. Приводить примеры иррацио-					
точками координатной прямой.	Приводить примеры иррацио- нальных чисел; распознавать					
Числовые промежутки: интервал,	рациональные и иррациональные					
отрезок, луч	числа; изображать числа точками					
	координатной прямой.					
	Находить десятичные приближения					
	рациональных и иррациональных					
	чисел; сравнивать и упорядочивать					
	действительные числа.					
	Описывать множество действи-					
	тельных чисел.					
	Использовать в письменной ма-					
	тематической речи обозначения и					
	графические изображения числовых					
	множеств, теоретико-множественную					
	символику					

2. Измерения, приближения, оценки (10 ч)

Приближенное значение величины, точность приближения. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя — степени 10 в записи числа.

Прикидка и оценка результатов вычислений

Находить,
поставлятьанализировать,
числовыесо-
характери-
стики объектов окружающего мира.Использоватьзаписьчиселвстандартномвидедлявыраженияразмеровобъектов,
объектов,длительностипроцессов в окружающеммире.

Сравнивать числа и величины, записанные с использованием степени 10.

Использовать разные формы записи приближенных значений; делать выводы о точности приближения по записи приближенного значения.

Выполнять вычисления с реальными данными.

Выполнять прикидку и оценку результатов вычислений

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Выполнять вычисления с реальными данными.

3. Введение в алгебру (8 ч)

Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных.

Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество

Выполнять элементарные знаковосимволические действия: применять буквы для обозначения чисел, для записи общих утверждений; составлять буквенные выражения по условиям, заданным словесно, рисунком или чертежом; преобразовывать алгебраические суммы произведения (выполнять приведение подобных слагаемых, раскрытие скобок, упрощение произведений).

Вычислять числовое значение буквенного выражения; **находить** область допустимых значений переменных в выражении

Понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации.

4. Многочлены (45 ч)

Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения.

Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен, разложение квадратного трехчлена на множители

Формулировать, записывать в символической форме и обосновывать свойства степени с натуральным показателем; применять свойства степени для преобразования выражений и вычислений.

Выполнять действия с многочленами. Выводить формулы сокращенного умножения, применять их в преобразованиях выражений и вычислениях.

Выполнять разложение многочленов на множители.

Распознавать квадратный трехчлен, **выяснять** возможность разложения на множители, **представлять** квадратный трехчлен в виде произведения линейных множителей.

Применять различные формы самоконтроля при выполнении преобразований

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

5. Алгебраические дроби (22 ч)

Алгебраическая дробь. Основное свойство алгебраической дроби. Сокращение дробей. Сложение, вычитание, умножение, деление алгебраических дробей.

Степень с целым показателем и ее свойства.

Рациональные выражения и их преобразования. Доказательство тождеств

Формулировать основное свойство алгебраической дроби и **применять** его для преобразования дробей.

Выполнять действия с алгебраическими дробями.

Представлять целое выражение в виде многочлена, дробное — в виде отношения многочленов; доказывать тождества.

Формулировать определение степени с целым показателем. Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем; применять свойства степени для преобразования выражений и вычислений

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

6. Квадратные корни (12ч)

Понятия квадратного корня, арифметического квадратного корня. Уравнение вида $x^2=a$. Свойства арифметических квадратных корней: корень из произведения, частного, степени; тождества, n=a, где а

= Применение свойств арифметических квадратных корней для преобразования числовых выражений и вычислений

Доказывать свойства арифметических квадратных корней; применять их для преобразования выражений.

Вычислять значения выражений, содержащих квадратные корни; выражать переменные из геометрических и физических формул.

Исследовать уравнение вида $x^2 = a$; находить точные и приближенные корни при a > 0

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характер.

7. Уравнения с одной переменной (38 ч)

Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. Решение уравнений, сводящихся к линейным. Квадратное уравнения. Неполные квадратные уравнения. Формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к квадратным. Биквадратное уравнение.

Примеры решения уравнений третьей и четвертой степени разложением на множители. Решение дробно-рациональных уравнений.

Решение текстовых задач алгебраическим способом

Распознавать линейные и квадратные уравнения, целые и дробные уравнения.

Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; **решать** дробнорациональные уравнения.

Исследовать квадратные уравнения по дискриминанту и коэффициентам. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления уравнения; решать составленное уравнение; интерпретировать результат

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения залач.

Первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

8. Системы уравнений (30 ч)

Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем уравнений. Система двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Решение систем двух уравнений, одно из которых линейное, а другое второй степени. Примеры решения систем нелинейных уравнений.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными.

График линейного уравнения с двумя переменными, угловой коэффициент прямой; условие параллельности прямых.

Графики простейших нелинейных уравнений (парабола, гипербола, окружность).

Графическая интерпретация системы уравнений с двумя переменными

Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решения уравнений с двумя переменными.

Решать задачи, алгебраической моделью которых является уравнение с двумя переменными; находить целые решения путем перебора.

Решать системы двух уравнений с двумя переменными, указанные в содержании.

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений; решать составленную систему уравнений; интерпретировать результат.

Строить графики уравнений с двумя переменными.

Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков.

Решать и исследовать уравнения и системы уравнений на основе функционально-графических представлений уравнений

Использовать функциональнографические представления для решения и исследования уравнений и систем.

Понимать сущности

алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

 Использовать
 математические

 средства
 наглядности
 графики
 для

 интерпретации,
 аргументации.

9. Неравенства (20 ч)

Числовые неравенства и их свойства.

Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства.

Системы линейных неравенств с одной переменной

Формулировать свойства числовых неравенств, иллюстрировать их на координатной прямой, доказывать алгебраически; применять свойства неравенств при решении задач.

Распознавать линейные и квадратные неравенства.

Решать линейные неравенства, системы линейных неравенств.

Решать квадратные неравенства на основе графических представлений

Понимать сущности алгоритмических предписаний и

алгоритмических предписании и умение действовать в соответствии с предложенным алгоритмом.

Использовать математические средства наглядности графики для интерпретации, аргументации.

10..Зависимости между величинами (15 ч)

Зависимость между величинами.

Представление зависимостей между величинами в виде формул. Вычисления по формулам.

Прямая пропорциональная зависимость: задание формулой, коэффициент пропорциональности; свойства. Примеры прямо пропорциональных зависимостей.

Обратная пропорциональная зависимость: задание формулой, коэффициент обратной пропорциональности; свойства. Примеры обратных пропорциональных зависимостей.

Решение задач на прямую пропорциональность и обратную пропорциональную зависимости

Составлять формулы, выражающие зависимости между величинами, **вычислять** по формулам.

Распознавать прямую и обратную пропорциональные зависимости.

Решать текстовые задачи на прямую и обратную пропорциональные зависимости (в том числе с контекстом из смежных дисциплин, из реальной жизни) **Умение** видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

11. Числовые функции (35 ч)

Понятие функции. Область множество определения И значений функции. Способы задания функции. График функции. Свойства функции, их отображение на графике: возрастание и убывание функции, нули функции, сохранение знака. Чтение и построение графиков функций.

Примеры графиков зависимостей, отражающих реальные процессы.

Функции, описывающие прямую и обратную пропорциональные зависимости, их графики.

Линейная функция, ее график и свойства.

Квадратичная функция, ее график и свойства.

Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций

фики функций
$$y = \sqrt{x}$$
; $y = \frac{x}{y}$; $y = |x|$

Вычислять значения функций, заданных формулами (при необходимости **использовать** калькулятор); **составлять** таблицы значений функций.

Строить по точкам графики функций. **Описывать** свойства функции на основе ее графического представления.

Моделировать реальные зависимости формулами и графиками. Читать графики реальных зависимостей. Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-символических действий. Строить речевые конструкции с использованием функциональной терминологии.

Использовать компьютерные программы для построения графиков функций, для исследования положения на координатной плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу.

Распознавать виды изучаемых функций. Показывать схематически положение на координатной плоскости графиков изучаемых функций в зависимости от значений коэффициентов, входящих в формулы.

Строить графики изучаемых функций; **описывать** их свойства

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем. Умение видеть математическую задачу в контексте проблемной

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни. Самостоятельно ставить

цели, выбирать и создавать алгоритмы для решения учебных математических проблем. Планировать и

осуществлять деятельность, направленную на решение задач исследовательского характера.

12. Числовые последовательности. Арифметическая и геометрическая прогрессии (15 ч)

Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой п-го члена.

Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых п членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты

Применять индексные обозначения, **строить** речевые высказывания с использованием терминологии, связанной с понятием последовательности.

Вычислять члены последовательностей, заданных формулой п-го члена или рекуррентной формулой.

Устанавливать закономерность в построении последовательности, если известны первые несколько ее членов.

Изображать члены последовательности точками на координатной плоскости.

Распознавать арифметическую и геометрическую прогрессии при разных способах задания.

Выводить на основе доказательных рассуждений формулы общего арифметической и геометрической прогрессий, суммы первых Л членов арифметической и геометрической прогрессий; решать задачи с использованием этих формул.

Рассматривать примеры из реальной жизни, иллюстрирующие изменение в арифметической прогрессии, в геометрической прогрессии; изображать соответствующие зависимости графически.

Решать задачи на сложные проценты, в том числе задачи из реальной практики (с использованием калькулятора)

Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

13. .Описательная статистика (10 ч)

Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические

характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании

Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным. Определять по диаграммам наибольшие и наименьшие данные, сравнивать величины.

Представлять информацию в виде таблиц, столбчатых и круговых диаграмм, в том числе с помощью компьютерных программ.

Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.), **находить** среднее арифметическое, размах числовых наборов.

Приводить содержательные примеры использования средних для описания данных (уровень воды в водоеме, спортивные показатели, определение границ климатических зон)

Понимать и использовать

математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргументации.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

14. Случайные события и вероятность (15 ч)

Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности

Проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретировать их результаты. Вычислять частоту случайного события; оценивать вероятность с помощью частоты, полученной опытным путем.

Решать задачи на нахождение вероятностей событий.

Приводить примеры случайных событий, в частности достоверных и невозможных событий, маловероятных событий.

Приводить примеры равновероятных событий

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

15. Элементы комбинаторики (8 ч)

Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал **Выполнять** перебор всех возможных вариантов для пересчета объектов или комбинаций.

Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или комбинаций (диагонали многоугольника, рукопожатия, число кодов, шифров, паролей и т. п.).

Распознавать задачи на определение числа перестановок и выполнять соответствующие вычисления.

Решать задачи на вычисление вероятности с применением комбинаторики

 Понимать
 и
 использовать

 математические
 средства
 наглядности

 схемы
 для
 иллюстрации,

 интерпретации
 интерпретации

Множество, элемент множества.
Задание множеств перечислением
элементов, характеристическим
свойством. Стандартные
обозначения числовых множеств.
Пустое множество и его
обозначение. Подмножество.
Объединение и пересечение
множеств, разность множеств.
Иллюстрация отношений между
множествами с помощью диаграмм

Эйлера — Венна.

Понятия о равносильности, следовании, употребление логических связок если то, том и только том случае. Логические связки и, или

16. Множества. Элементы логики (7 ч)

Приводить примеры конечных и бесконечных множеств. Находить объединение пересечение И множеств. Приводить примеры несложных классификаций.

Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса.

Иллюстрировать математические понятия и утверждения примерами. Использовать примеры и контрпримеры в аргументации.

Конструировать математические предложения с помощью связок если то, в том и только том случае, логических связок и, или

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргументации.

Резерв -103 ч

Раздел «Геометрия»

1. Прямые и углы (20 ч)

Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, развернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свойства углов с параллельными и перпендикулярными сторонами. Взаимное расположение прямых на плоскости: параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности перпендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах биссектрисы угла и серединного перпендикуляра к отрезку.

Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Опираясь на условие задачи, проводить необходимые доказательные рассуждения. Сопоставлять полученный результат с условием задачи.

Уметь находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме, понимать и использовать математические средства наглядности (чертежи) для иллюстрации, интерпретации.

2.Треугольники (65ч.)

Треугольники.
Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.

Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника, теорема о внешнем угле треугольника. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180° ; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан, высот и их продолжений

Формулировать определения прямоугольного, остроугольного, тупоугольного, равнобедренного, равностороннего треугольников; высоты, медианы, биссектрисы, средней линии треугольника; распознавать и изображать их на чертежах и рисунках.

Формулировать определение равных треугольников. **Формулировать** и **доказывать** теоремы о признаках равенства треугольников.

Объяснять и иллюстрировать неравенство треугольника. Формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника, соотношениях между сторонами и углами треугольника, сумме углов треугольника, внешнем угле треугольника, о средней линии треугольника.

Формулировать определение подобных треугольников. **Формулировать** и **доказывать** теоремы о признаках подобия треугольников, теорему Фалеса.

Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольника через его стороны. Формулировать и доказывать теорему Пифагора. Формулировать определения синуса, косинуса, тангенса, котангенса углов от 0 до 180°.

Выводить формулы, выражающие функции углов от 0 до 180° через функции острых углов.

Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной тригонометрической функции угла вычислять значения других тригонометрических функций этого угла.

Формулировать и доказывать теоремы синусов и косинусов.

Формулировать и **доказывать** теоремы о точках пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений.

Исследовать свойства треугольника с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. **Выделять** в условии задачи условие и заключение.

Моделировать условие задачи с помощью чертежа или рисунка, **проводить** дополнительные построения в ходе решения. Опираясь на данные условия задачи, **проводить** необходимые рассуждения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение выдвигать гипотезы при решении **v**чебных залач. понимать необходимость их проверки. применять Умение индуктивные дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение планировать и осуществлять деятельность, правленную на решение задач исследовательского характера.

3. Четырёхугольники (20ч)

Четырехугольник.

Параллелограмм, теоремы о свойствах сторон, углов и диагоналей параллелограмма и его признаки.

Прямоугольник, теорема о равенстве диагоналей прямоугольника.

Ромб, теорема о свойстве диагоналей.

Квадрат.

Трапеция, средняя линия трапеции; равнобедренная трапеция Формулировать определения параллелограмма, прямоугольника, квадрата, ромба, трапеции, равнобедренной и прямоугольной трапеции, средней линии трапеции; распознавать и изображать их на чертежах и рисунках.

Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадрата, ромба, трапеции.

Исследовать свойства четырехугольников с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения.

Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения залач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

4. Многоугольники (10ч)

Многоугольник. Выпуклые многоугольники. Правильные многоугольники. Теорема о сумме углов выпуклого многоугольника. Теорема о сумме внешних углов выпуклого многоугольника

 Распознавать
 многоугольники,
 формулировать

 определение
 и
 приводить
 примеры

 многоугольников.

Формулировать и **доказывать** теорему о сумме углов выпуклого многоугольника.

Исследовать свойства многоугольников помощью компьютерных программ.

Решать задачи на доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения.

Интерпретировать полученный результат и **сопос**тавлять его с условием задачи

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Умениепланироватьиосуществлятьдеятельность,направленнуюнарешениезадачисследовательскогохарактера.

5. Окружность и круг (20ч)

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Теоремы о существовании окружности, вписанной в треугольник, и окружности, описанной около треугольника.

Вписанные и описанные окружности правильного многоугольника.

Формулы для вычисления стороны правильного многоугольника; радиуса окружности, вписанной в правильный многоугольник; радиуса окружности, описанной около правильного многоугольника

Формулировать определения понятий, связанных с окружностью, центрального и вписанного углов, секущей и касательной к окружности, углов, связанных с окружностью.

Формулировать и д**оказывать** теоремы о вписанных углах, углах, связанных с окружностью.

Изображать, распознавать и **описывать** взаимное расположение прямой и окружности.

Изображать и формулировать определения вписанных и описанных многоугольников и треугольников; окружности, вписанной в треугольник, и окружности, описанной около треугольника.

Формулировать и д**оказывать** теоремы о вписанной и описанной окружностях треугольника и многоугольника.

Исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления.

Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения.

Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения.

Интерпретировать полученный результат и **сопоставлять** его с условием задачи

Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки.

Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

 Умение
 планировать
 и

 осуществлять
 деятельность,

 направленную
 на решение

 задач
 исследовательского

 характера.

6 Геометрические преобразования (10ч)

Понятие о равенстве фигур. Понятие движения: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии

Объяснять и иллюстрировать понятия равенства фигур, подобия. Строить равные и симметричные фигуры, выполнять параллельный перенос и поворот.

Исследовать свойства движений помощью компьютерных программ. **Выполнять** проекты по темам

Выполнять проекты по темам геометрических преобразований на плоскости

 Умение
 планировать
 и

 осуществлять
 деятельность,

 направленную
 на решение

 задач
 исследовательского

 характера.

7. Построения с помощью циркуля и линейки (5ч)

Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на *п* равных частей

Решать задачи на построение с помощью циркуля и линейки.

 Находить
 условия
 существования

 решения,
 выполнять
 построение
 точек,

 необходимых
 для
 построения
 искомой

 фигуры.

Доказывать, что построенная фигура удовлетворяет условиям задачи (определять число решений задачи при каждом возможном выборе данных)

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

 Иметь
 первоначальные

 представления
 об идеях и о

 методах математики
 как универсальном языке науки и

 техники,
 средстве

 моделирования
 явлений и

 процессов.

8. Измерение геометрических величин (25ч)

Длина отрезка. Длина ломаной. Периметр многоугольника.

Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Длина окружности, число л; длина дуги окружности.

Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника через две стороны и угол между ними, через периметр и радиус вписанной окружности; формула Герона. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур

Объяснять и иллюстрировать понятие периметра многоугольника.

Формулировать определения расстояния между точками, от точки до прямой, между параллельными прямыми.

Формулировать и объяснять свойства длины, градусной меры угла, площади.

Формулировать соответствие между величиной центрального угла и длиной дуги окружности.

Объяснять и иллюстрировать понятия равновеликих и равносоставленных фигур.

Выводить формулы площадей прямоугольника, параллелограмма, треугольника и трапеции, а также формулу, выражающую площадь треугольника через две стороны и угол между ними, длину окружности, площадь круга.

Находить площадь многоугольника разбиением на треугольники и четырехугольники.

Объяснять и **иллюстрировать** отношение площадей подобных фигур.

Решать задачи на вычисление линейных величин, градусной меры угла и площадей треугольников, четырехугольников и многоугольников, длины окружности и площади круга. Опираясь на данные условия задачи, находить возможности применения необходимых формул, преобразовывать формулы.

Использовать формулы для обоснования доказательных рассуждений в ходе решения.

Интерпретировать полученный результат и **сопоставлять** его с условием задачи

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

 Иметь
 первоначальные

 представления об идеях и о
 и о

 методах математики как универсальном языке науки и
 науки и

 техники,
 средстве

 моделирования явлений и
 процессов

9. Координаты (10ч)

Декартовы координаты на плоскости. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности Объяснять и иллюстрировать понятие декартовой системы координат.

Выводить и **использовать** формулы координат середины отрезка, расстояния между двумя точками плоскости, уравнения прямой и окружности.

Выполнять проекты по темам использования координатного метода при решении задач на вычисления и доказательства

Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

 Иметь
 первоначальные

 представления
 об идеях и о

 методах математики
 как универсальном языке науки и техники,

 техники,
 средстве моделирования

 и процессов
 звлений и процессов

10. Векторы (10ч)				
Вектор. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Угол между векторами. Скалярное произведение вектор	Формулировать определения и иллюстрировать понятия вектора, длины (модуля) вектора, коллинеарных векторов, равных векторов. Вычислять длину и координаты вектора. Находить угол между векторами. Выполнять операции над векторами. Выполнять проекты по темам использования векторного метода при решении задач на вычисления и доказательства	Умение понимать и использовать математические средства наглядности. Умение применяти индуктивные и дедуктивные способы рассуждений, видети различные стратегии решения задач. Умение планировать и осуществлять деятельность направленную на решение задач исследовательского характера;		
	11. Элементы логики (5ч)			
Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример	Воспроизводить формулировки определений; конструировать несложные определения самостоятельно. Воспроизводить формулировки и доказательства изученных теорем, проводить несложные доказательства самостоятельно, ссылаться в ходе обоснований на определения, теоремы, аксиомы	Умение понимать и использовать математические средства наглядности. Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач. Умение планировать и осуществлять деятельность направленную на решение задач исследовательского характера;		

Описание учебно-методического и материально-технического обеспечения образовательного процесса

- 1. Нормативные документы: Примерная программа основного общего образования по математике
- **2.** Учебники: по математике для 5—6 классов, по алгебре для 7-9 классов, по геометрии для 7—9 классов.
 - УМК С. М. Никольский «Математика» 5,6
 - УМК С. М. Никольский « Алгебра» 7-9
 - УМК Л.С.Атанасян «Геометрия 7-9»
- 3. Научная, научно-популярная, историческая литература.
- **4.** Справочные пособия (энциклопедии, словари, справочники по математике и т.п.).
- 5. Печатные пособия: Портреты выдающихся деятелей математики.
- 6. Информационные средства

- Мультимедийные обучающие программы и электронные учебные издания по основным разделам курса математики.
- Электронная база данных для создания тематических и итоговых разноуровневых тренировочных и проверочных материалов для организации фронтальной и индивидуальной работы.
- 7. Технические средства обучения
 - Мультимедийный компьютер.
 - Мультимедийный проектор.
 - Экран навесной.
- 8. Учебно-практическое и учебно-лабораторное оборудование
 - Доска магнитная.
 - Комплект чертежных инструментов (классных и раздаточных): линейка, транспортир, угольник (30°, 60°, 90°), угольник (45°, 90°), циркуль.
 - Комплекты планиметрических и стереометрических тел (демонстрационных и раздаточных).
 - Комплект для моделирования (цветная бумага, картон, калька, клей, ножницы, пластилин).

Планируемые результаты изучения учебного предмета, курса. Натуральные числа. Дроби. Рациональные числа

Выпускник научится:

- понимать особенности десятичной системы счисления;
- оперировать понятиями, связанными с делимостью натуральных чисел;
- выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
 - сравнивать и упорядочивать рациональные числа;
- выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
- использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Выпускник получит возможность:

- познакомиться с позиционными системами счисления с основаниями, отличными от 10;
- углубить и развить представления о натуральных числах и свойствах делимости;
- научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа.

Выпускник научится:

- использовать начальные представления о множестве действительных чисел;
- оперировать понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

- развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;
- развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические др

Измерения, приближения, оценки.

Выпускник научится:

• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

- понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
- понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

Алгебраические выражения.

Выпускник научится:

- оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
- выполнять преобразования выражений, содержащих степени с целыми по-казателями и квадратные корни;
- выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
 - выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

- выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
- применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

Уравнения.

Выпускник научится:

• решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

- понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
- применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

- овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
- применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства.

Выпускник научится:

- понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
- решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;
- применять аппарат неравенств для решения задач из различных разделов курса. Выпускник получит возможность научиться:
- разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;
- применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции.

Выпускник научится:

- понимать и использовать функциональные понятия и язык (термины, символические обозначения);
- строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
- понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

- проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);
- использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности.

Выпускник научится:

- понимать и использовать язык последовательностей (термины, символические обозначения);
- применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

- решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;
- понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую с экспоненциальным ростом.

Описательная статистика.

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

Случайные события и вероятность.

<u>Выпускник научится</u> находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

Комбинаторика.

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия.

Выпускник научится:

- распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
 - вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность:

- научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
- распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
 - строить развёртки куба и прямоугольного параллелепипеда;
- определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
- углубить и развить представления о пространственных геометрических фигурах;
- научиться применять понятие развёртки для выполнения практических расчётов.

Геометрические фигуры.

Выпускник научится:

- пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
- распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
- находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0• до 180•, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
- оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
- решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
- решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
 - решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

- овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
- приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
- овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
- научиться решать задачи на построение методом геометрического места точек и методом подобия;
- приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
- приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин.

Выпускник научится:

- использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
- вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
 - вычислять длину окружности, длину дуги окружности;
- вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
- решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
- решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства). Выпускник получит возможность научиться:
- вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
- вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
- применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.

Координаты.

Выпускник научится:

- вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
- использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

- овладеть координатным методом решения задач на вычисления и доказательства;
- приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
- приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».

Векторы.

Выпускник научится:

- оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
- находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на

число, применяя при необходимости сочетательный, переместительный и распределительный законы;

• вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

- овладеть векторным методом для решения задач на вычисления и доказательства;
- приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».

Оценка планируемых результатов

Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.

Система оценки предусматривает *уровневый подход* к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.

Система оценки предусматривает *уровневый подход* к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

Особенности оценки предметных результатов

Оценка предметных результатов представляет собой оценку достижения обучающимся планируемых результатов по отдельным предметам.

Формирование этих результатов обеспечивается за счёт основных компонентов образовательного процесса — учебных предметов.

Основным **объектом** оценки предметных результатов в соответствии с требованиями Стандарта является способность к решению учебно-познавательных и учебно-практических задач, основанных на изучаемом учебном материале, с использованием способов действий, релевантных содержанию учебных предметов, в том числе метапредметных (познавательных, регулятивных, коммуникативных) действий.

Система оценки предметных результатов освоения учебных программ с учётом уровневого подхода, принятого в Стандарте, предполагает выделение базового уровня достижений как точки отсчёта при построении всей системы оценки и организации индивидуальной работы с обучающимися.

Реальные достижения обучающихся могут соответствовать базовому уровню, а могут отличаться от него как в сторону превышения, так и в сторону недостижения.

Практика показывает, что для описания достижений обучающихся целесообразно установить следующие пять уровней.

Базовый уровень достижений — уровень, который демонстрирует освоение учебных действий с опорной системой знаний в рамках диапазона (круга) выделенных задач. Овладение базовым уровнем является достаточным для продолжения обучения на следующей ступени образования, но не по профильному направлению. Достижению базового уровня соответствует отметка «удовлетворительно» (или отметка «3», отметка «зачтено»).

Превышение базового уровня свидетельствует об усвоении опорной системы знаний на уровне осознанного произвольного овладения учебными действиями, а также о кругозоре, широте (или избирательности) интересов. Целесообразно выделить следующие два уровня, превышающие базовый:

- **повышенный уровень** достижения планируемых результатов, оценка «хорошо» (отметка «4»);
- высокий уровень достижения планируемых результатов, оценка «отлично» (отметка «5»).

Повышенный и высокий уровни достижения отличаются по полноте освоения планируемых результатов, уровню овладения учебными действиями и сформированностью интересов к данной предметной области.

Индивидуальные траектории обучения обучающихся, демонстрирующих повышенный и высокий уровни достижений, целесообразно формировать с учётом интересов этих обучающихся и их планов на будущее. При наличии устойчивых интересов к учебному предмету и основательной подготовки по нему такие обучающиеся могут быть вовлечены в проектную деятельность по предмету и сориентированы на продолжение обучения в старших классах по данному профилю.

Для описания подготовки учащихся, уровень достижений которых **ниже базового**, целесообразно выделить также два уровня:

- **пониженный уровень** достижений, оценка «неудовлетворительно» (отметка «2»);
 - низкий уровень достижений, оценка «плохо» (отметка «1»).

Недостижение базового уровня (пониженный и низкий уровни достижений) фиксируется в зависимости от объёма и уровня освоенного и неосвоенного содержания предмета.

Как правило, **пониженный уровень** достижений свидетельствует об отсутствии систематической базовой подготовки, о том, что обучающимся не освоено даже и половины планируемых результатов, которые осваивает большинство обучающихся, о том, что имеются значительные пробелы в знаниях, дальнейшее обучение затруднено. При этом обучающийся может выполнять отдельные задания повышенного уровня. Данная группа обучающихся (в среднем в ходе обучения составляющая около 10%) требует специальной диагностики затруднений в обучении, пробелов в системе знаний и оказании целенаправленной помощи в достижении базового уровня.

Низкий уровень освоения планируемых результатов свидетельствует о наличии только отдельных фрагментарных знаний по предмету, дальнейшее обучение практически невозможно. Обучающимся, которые демонстрируют низкий уровень достижений, требуется специальная помощь не только по учебному предмету, но и по формированию мотивации к обучению, развитию интереса к изучаемой предметной области, пониманию значимости предмета для жизни и др. Только наличие положительной мотивации может стать основой ликвидации пробелов в обучении для данной группы обучающихся.

Описанный выше подход целесообразно применять в ходе различных процедур оценивания: текущего, промежуточного и итогового.

Для формирования норм оценки в соответствии с выделенными уровнями необходимо описать достижения обучающегося базового уровня (в терминах знаний и умений, которые он должен продемонстрировать), за которые обучающийся обоснованно получает оценку «удовлетворительно». После этого определяются и содержательно описываются более высокие или низкие уровни достижений. Важно акцентировать внимание не на ошибках, которые сделал обучающийся, а на учебных достижениях, которые обеспечивают продвижение вперёд в освоении содержания образования.

Для оценки динамики формирования предметных результатов в системе внутришкольного мониторинга образовательных достижений целесообразно фиксировать и анализировать данные о сформированности умений и навыков, способствующих освоению систематических знаний, в том числе:

- первичному ознакомлению, отработке и осознанию теоретических моделей и понятий (общенаучных и базовых для данной области знания), стандартных алгоритмов и процедур;
- выявлению и осознанию сущности и особенностей изучаемых объектов, процессов и явлений действительности (природных, социальных, культурных,

технических и др.) в соответствии с содержанием конкретного учебного предмета, *созданию и использованию моделей* изучаемых объектов и процессов, схем;

• выявлению и анализу существенных и устойчивых связей и отношений между объектами и процессами.

При этом обязательными составляющими системы накопленной оценки являются материалы:

- стартовой диагностики;
- тематических и итоговых проверочных работ по всем учебным предметам;
- творческих работ, включая учебные исследования и учебные проекты.

Решение о достижении или недостижении планируемых результатов или об освоении или неосвоении учебного материала принимается на основе результатов выполнения заданий базового уровня. В период введения Стандарта критерий достижения/освоения учебного материала задаётся как выполнение не менее 50% заданий базового уровня или получение 50% от максимального балла за выполнение заданий базового уровня

Уровни подготовки учащихся и критерии успешности обучения по математике

Уровни	Оценка	Теория	Практика
1	«3»	Распознавать объект, находить нужную формулу, признак, свойство и т.д.	<u>Уметь</u> выполнять задания по образцу, на непосредственное применение формул, правил, инструкций и т.д.
2	« 4 »	Знать формулировки всех понятий, их свойства, признаки, формулы. Уметь воспроизвести доказательства, выводы, устанавливать взаимосвязь, выбирать нужное для выполнения данного задания	Уметь работать с учебной и справочной литературой, выполнять задания, требующие несложных преобразований с применением изучаемого материала
3 Понимание Деятельность при от- сутствии явно выраженного алго- ритма	«5»	Делать логические заключения, составлять алгоритм, модель несложных ситуаций	Уметь применять полученные знания в различных ситуациях. Выполнять задания комбинированного характера, содержащих несколько понятий.
4 Овладение умственной самостоятельностью Творческая исследовательская деятельность	«5»	В совершенстве знать изученный материал, свободно ориентироваться в нем. Иметь знания из дополнительных источников. Владеть операциями логического мышления. Составлять модель любой ситуации.	Уметь применять знания в любой нестандартной ситуации. Самостоя-тельно выполнять творческие исследовательские задания. Выполнять функции консультанта.

Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

1. <u>Оценка письменных контрольных работ обучающихся по математике.</u> Отметка «5», если:

- работа выполнена полностью;
- в логических рассуждениях и обосновании решения нет пробелов и ошибок;
- в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
- допущены одна ошибка или есть два три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

• допущено более одной ошибки или более двух — трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

• допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

• работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся по математике

Ответ оценивается **отметкой** «**5**», если ученик:

- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
- изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
 - правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
- продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

- отвечал самостоятельно, без наводящих вопросов учителя;
- возможны одна две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4»,

если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

- в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
- допущены один два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

- неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
- имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
- при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

- не раскрыто основное содержание учебного материала;
- обнаружено незнание учеником большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

• ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

Грубыми считаются ошибки:

- незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
- незнание наименований единиц измерения;
- неумение выделить в ответе главное;
- неумение применять знания, алгоритмы для решения задач;
- неумение делать выводы и обобщения;
- неумение читать и строить графики;
- неумение пользоваться первоисточниками, учебником и справочниками;
- потеря корня или сохранение постороннего корня;
- отбрасывание без объяснений одного из них;
- равнозначные им ошибки;
- вычислительные ошибки, если они не являются опиской;
- логические ошибки.

К негрубым ошибкам следует отнести:

- неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
- неточность графика;
- нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
- нерациональные методы работы со справочной и другой литературой;
- неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

- нерациональные приемы вычислений и преобразований;
- небрежное выполнение записей, чертежей, схем, графиков.

Контроль ЗУН предлагается при проведении математических диктантов, практических работ, тестов, самостоятельных работ обучающего и контролирующего вида, контрольных работ.

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 603332450510203670830559428146817986133868575796

Владелец Абаева Зарина Тимурбулатовна

Действителен С 17.03.2022 по 17.03.2023